基調講演2

機械学習研究の現状とこれから

概要

音声認識,画像理解,自然言語翻訳などの分野で,機械学習の性能が人間を超えるレベルに達しつつあり,機械学習の研究がますます活発化している.一方,現在の機械学習分野の研究スタイルでは,理論構築・アルゴリズム考案・ソフトウエア実装・データサイエンティスト育成と多大な時間とコストが掛かるため,国際的な巨大企業が機械学習の業界を独占しつつある.また,深層学習などの先端技術の活用のためには膨大な量の教師付きデータが必要となるため,医療や災害などビッグデータが取れない分野への機械学習応用は未だ道半ばである.本講演では,機械学習技術の研究開発コストとデータ収集のコストを軽減することを目指した我々の取り組みを紹介し,ソフトウェア工学の研究者・技術者との議論の出発点としたい.

杉山将

理化学研究所 革新知能統合研究センター センター長
東京大学 大学院新領域創成科学研究科 複雑理工学専攻 教授

【略歴】

2001年東京工業大学博士課程修了。博士(工学)。同大助手、助教授、准教授を経て、2014年より東京大学教授。2016年より理化学研究所革新知能統合研究センター長を併任。機械学習とデータマイニングの理論研究とアルゴリズムの開発、および、その信号処理、画像処理、ロボット制御などへの応用研究に従事。

​講演スライドはこちら(SlideShare)